If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-35x-147=0
a = 1; b = -35; c = -147;
Δ = b2-4ac
Δ = -352-4·1·(-147)
Δ = 1813
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1813}=\sqrt{49*37}=\sqrt{49}*\sqrt{37}=7\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-7\sqrt{37}}{2*1}=\frac{35-7\sqrt{37}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+7\sqrt{37}}{2*1}=\frac{35+7\sqrt{37}}{2} $
| 33+8y=45 | | 3-5m=12 | | 11x-8+13x-4=180 | | a=9(a+10)= | | a=9(a=10) | | 3m(3m+6)-3(m^2+4m+1)=0 | | 7x^2-15x-32=0 | | x2+2x+19=0 | | x=(-5^)^2 | | x=(-5^2 | | 5x÷3-2=1÷3(5x-6) | | Y=6÷4x^2-6 | | 7x^2-41x+32=0 | | 6x-9=10x | | x2+5x+24=18 | | x/2+16=47/2 | | 1/3c+14=26 | | (x+6)^2-36=0 | | x/5-1=x/8=2 | | 0.05(m+9)=290 | | 180-4x/2=180+15-x/3 | | 16^(3x-1)=32 | | (8x+2)^2=13 | | -9v-60=21v-16 | | Y=4/5x-2/3 | | -4(5t-2)+7t=2t-3 | | -3x+2=-42x-10 | | 12(-8x+3)=-17(x-5) | | (18-2x)(18-2x)(x)=432 | | 3/4(2x+2/3)=2 | | -4(2x-8)+3=8x+35 | | 1/3x+1/4=1/2 |